Skip to main content

矩阵快速幂

func fib(n int) int {
if n == 0 {
return 0
}
m := matrix{
{1, 1},
{1, 0},
}
f0 := matrix{{1}, {0}}
fn := m.powMul(n-1, f0)
return fn[0][0]
}

type matrix [][]int

func newMatrix(n, m int) matrix {
a := make(matrix, n)
for i := range a {
a[i] = make([]int, m)
}
return a
}

// 返回矩阵 a 和矩阵 b 相乘的结果
func (a matrix) mul(b matrix) matrix {
c := newMatrix(len(a), len(b[0]))
for i, row := range a {
for k, x := range row {
if x == 0 {
continue
}
for j, y := range b[k] {
c[i][j] += x * y
}
}
}
return c
}

// a^n * f0
func (a matrix) powMul(n int, f0 matrix) matrix {
res := f0
for ; n > 0; n /= 2 {
if n%2 > 0 {
res = a.mul(res)
}
a = a.mul(a)
}
return res
}

const mod = 1_000_000_007

type matrix [][]int

func newMatrix(n, m int) matrix {
a := make(matrix, n)
for i := range a {
a[i] = make([]int, m)
}
return a
}

func newIdentityMatrix(n int) matrix {
a := make(matrix, n)
for i := range a {
a[i] = make([]int, n)
a[i][i] = 1
}
return a
}

func (a matrix) mul(b matrix) matrix {
c := newMatrix(len(a), len(b[0]))
for i, row := range a {
for j := range b[0] {
for k, v := range row {
c[i][j] = (c[i][j] + v*b[k][j]) % mod
}
}
}
return c
}

func (a matrix) pow(n int64) matrix {
res := newIdentityMatrix(len(a))
for ; n > 0; n /= 2 {
if n%2 > 0 {
res = res.mul(a)
}
a = a.mul(a)
}
return res
}